
Chapter 1

Kinematics

1.1 Motion Diagrams

When first applying kinematic (motion) principles, there is tendency to use the wrong

kinematic quantity – to inappropriately interchange quantities such as position, velocity,

and acceleration. Constructing a motion diagram should reduce this confusion and should

provide a better intuitive understanding of the meaning of these quantities.

A motion diagram represents the position, velocity, and acceleration of an object at

several different times. The times are usually separated by equal time intervals. At

each position, the object’s velocity and acceleration are represented by arrows. If the

acceleration is constant throughout the motion, one arrow can represent the acceleration

at all positions shown in the diagram.

You should be come so familiar with motion diagrams that you can read a linear-motion

problem and draw a reasonable diagram that represents the motion described in the

problem. When you complete the mathematical solution to a kinematic problem later in

the semester, you can see if your answer is consistent with the motion diagram.

The Motion Diagrams for three common types of linear motion are described below.
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1.1.1 Constant Velocity

The first motion diagram, shown in Figure 1.1, is for an object moving at a constant

speed toward the right. The motion diagram might represent the changing position of a

Figure 1.1: The motion diagram for an object moving with a constant velocity.
The acceleration is zero because the velocity is not changing.

car moving at constant speed along a straight highway. Each dot indicates the position of

the object at a different time. The times are separated by equal time intervals. Because

the object moves at a constant speed, the displacements from one dot to the next are of

equal length. The velocity of the object at each position is represented by an arrow with

the symbol v under it. The velocity arrows are of equal length (the velocity is constant).

The acceleration is zero because the velocity does not change.

1.1.2 Constant Acceleration in the Direction of Motion

The motion diagram in Figure 1.2 represents an object that undergoes constant acceleration

Figure 1.2: The motion diagram for an object accelerating in the direction of its
velocity. The velocity increases as time progresses.

toward the right in the same direction as the initial velocity. This occurs when your car

accelerates to pass another car or when a race car accelerates (speeds up) while traveling

along the track. Once again, the dots represent schematically the positions of the object

at times separated by equal time intervals ∆t. Because the object accelerates toward the

right, its velocity arrows increase in length toward the right as time passes. The product

a(∆t) = ∆v represents the increase in length (increase in speed) of the velocity arrow

in each time interval ∆t. The displacement between adjacent positions increases as the

object moves right because the object moves faster as it travels right.
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1.1.3 Constant Acceleration Opposite the Direction of Motion

The motion diagram in Figure 1.3 represents an object that undergoes constant accelera-

Figure 1.3: The motion diagram for an object accelerating in the opposite di-
rection of its velocity. The velocity decreases as time progresses.

tion opposite the direction of the initial velocity (this is sometimes called “deceleration”,

a slowing of the motion). For this case, the acceleration arrow points left, opposite the

direction of motion. This type of motion occurs when a car skids (打滑) to a stop. The

dots represent schematically the positions of the object at equal time intervals. Because

the acceleration points left, opposite the motion, the object’s velocity arrows decrease by

the same amount from one position to the next. We are now subtracting ∆v = a(∆t)

from the velocity during each time interval ∆t. Because the object moves slower as it

travels right, the displacement between adjacent positions decreases as the object moves

right.
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Table 1.1: Construct qualitative motion diagrams for each of the following situations:

(a) a car traveling toward
the left at decreasing speed.

(b) a rocket whose burning
fuel causes it to move verti-
cally upward at increasing
speed.

(c) the rocket in (b) after its
fuel is burned up, and while
it still moves upward, but
now at decreasing speed.

(d) a skier moving at de-
creasing speed up an in-
cline.

(e) a car coasting down an
incline at increasing speed.

(f) a block being pushed up-
ward with increasing speed
by a spring.

More practice making motion diagrams:

• a bullet shot horizontally to the right, slowing down slightly because of wind resis-

tance

• a turtle walking slowly but steadily northward

• a ball dropped from a tall building, moving down with a steady speed
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Table 1.2: Given the velocity parts of the qualitative motion diagrams, first sketch and
label the acceleration arrow, then construct a verbal description of the motion.

(a) (b) (c)

(d) (e) (f)

More practice: Consider each of the above, but tilted at some angle (as with an inclined

plane). Then, imagine an object moving like that and write down phrases describing those

situations.
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1.2 Determining the Direction of Acceleration

The direction (and magnitude) of an object’s acceleration at any time t can be determined

if we know its velocity just before and just after that time.

By example, the procedure for graphically finding the direction is given here. Consider a

general situation where both the speed and direction are changing.

Figure 1.4: Subtracting velocities to determine the acceleration.

General Situation: As shown in [A], the object moves along the curved path, and

slows down. Three locations are marked, numbered 0, 1, and 2. There is an equal time

interval ∆t between these points. We want to find the acceleration in the vicinity of

point 1, at time t.

Initial Velocity vi: To represent how it moves from dot 0 to 1, that is, before time t,

draw the arrow and label it vi.

Final Velocity vf : To represent how it moves from dot 1 to 2, that is, after time t, draw

the arrow and label it vf .

Change in Velocity ∆v: To represent the change in velocity, first redraw the arrows –

putting the tails of vf and vi together. Then construct a third arrow pointing from the

head of the initial to the head of the final. Call this third arrow ∆v.

−→
∆v = −→vf −−→vi −→vf = −→vi +

−→
∆v

Notice that ∆v is the arrow that one must ‘add’ to vi to get vf .

Acceleration a: The acceleration ~a is precisely
−→
∆v ÷ ∆t, but for now, we only want

its direction: Always, both a and ∆v point in the same direction. Draw and label the a

arrow.
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Graphically subtracting v’s to find direction of a - 1

A ball moves with decreasing

speed toward the right along a

straight line. Determine the

direction of the ball’s

acceleration when at

position A.

Initial (earlier, before)

Velocity: Draw an arrow

representing the velocity of

the ball before it arrives at

point A. Label it vi.

Final (later, after)

Velocity: Draw an arrow

representing the velocity of

the ball after it passes

point A. Label it vf .

Velocity Change: Subtract the two velocity

vectors to find
−→
∆v = −→vf −−→vi . Put the tails together

and draw the arrow that connects the head of vi to

the head of vf . Label this new arrow ∆v, “the

change in velocity”.

Acceleration: The acceleration equals the velocity

change ∆v divided by the time interval (between

dots in the motion diagram). In this example, we

only want the direction of a, which is always the

same as the direction of ∆v.

Go back to the original picture and draw an

acceleration arrow and label it.
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Graphically subtracting v’s to find direction of a - 2

A ball moves at a constant speed in a

counter-clockwise direction along a circular path.

Determine the direction of the ball’s acceleration

when at position A.

Initial (earlier, before) Velocity: Draw

an arrow representing the velocity of the

ball before it arrives at point A. Label it vi.

Final (later, after) Velocity: Draw an

arrow representing the velocity of the ball

after it passes point A. Label it vf .

Velocity Change: Subtract the two velocity

vectors to find
−→
∆v = −→vf −−→vi . Put the tails together

and draw the arrow that connects the head of vi to

the head of vf . Label this new arrow ∆v, “the

change in velocity”.

Acceleration: The acceleration equals the velocity

change ∆v divided by the time interval (between

dots in the motion diagram). In this example, we

only want the direction of a, which is always the

same as the direction of ∆v.

Go back to the original picture and draw an

acceleration arrow and label it.
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Graphically subtracting v’s to find direction of a - 3

A marble passes point point A as it rolls along a

slide with increasing speed (see sketch).

Determine the direction of the marble’s

acceleration when it is at position A.

Initial (earlier, before) Velocity: Draw an

arrow representing the velocity of the marble

before it arrives at point A. Label it vi.

Final (later, after) Velocity: Draw an arrow

representing the velocity of the marble after it

passes point A. Label it vf .

Velocity Change: Subtract the two velocity

vectors to find
−→
∆v = −→vf −−→vi . Put the tails together

and draw the arrow that connects the head of vi to

the head of vf . Label this new arrow ∆v, “the

change in velocity”.

Acceleration: The acceleration equals the velocity

change ∆v divided by the time interval (between

dots in the motion diagram). In this example, we

only want the direction of a, which is always the

same as the direction of ∆v.

Go back to the original picture and draw an

acceleration arrow and label it.
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Graphically subtracting v’s to find direction of a - 4

(a) A car travels with de-
creasing speed along a hori-
zontal, curved road. Deter-
mine the direction of the ac-
celeration when the car is at
point P.

(b) A large mass is attached
to an oscillating spring. De-
termine the direction of the
acceleration of the mass
when it is at point P, mov-
ing downward with decreas-
ing speed.

(c) A ball is thrown ver-
tically upward. Determine
the direction of the acceler-
ation of the ball when it is
at its highest point.

(d) A pendulum bob is
swinging back and forth.
Determine the direction of
the acceleration when the
bob is at its lowest point.

(e) A pendulum bob is
swinging back and forth.
Determine the direction of
the acceleration when it is
at its highest point (at 45◦

as shown).

(f) A basketball is thrown
in an arc toward the bas-
ket. Determine the direc-
tion of the acceleration of
the mass when it is at the
highest point.



Rulers and Clocks: Coordinate Systems 11

1.3 Rulers and Clocks: Coordinate Systems

1.3.1 Signs of kinematic qualities - Straight-line motion

– Back to Straight-line Motion –

Kinematic quantities are things that describe the motion, such as time, position, velocity,

and acceleration.

Up to now, there has been little reference to rulers or clocks.1 There were no axes or

coordinate systems. Instead, we used terms like “upward”, “to the right”, “earlier”, or “at

point A”. One result is that our kinematic quantities were not “positive” or “negative”.

We deliberately didn’t say things like “down is negative”, because it wasn’t.

To get numerical results, we must now introduce a clock and a ruler into our system.

The ruler will define a “coordinate system”. Of course, the clock will measure time and

the ruler will measure position in space (where it is along the line).

Figure 1.5: top: A ball is moving along a

line, but its x coordinate value is not defined.

center: Introduce a coordinate system by

laying down a ruler. bottom: Identify the

location of the ball. Here it is on the negative

side of the x-axis.

The clock and ruler are constructs (in-

vented by humans), and are not part

of the physical system. (1) We do have

a choice in how we place the ruler or

when we start our clock. (2) Creating

such constructs shouldn’t change the

physical system.

Velocity and acceleration will fit nicely

into this construction as well. But first

time:

Time: We should be able to start the

clock whenever we please. It is our

choice. However, for convenience, it

is usually, but not always, started at the beginning of the process. Any other event that

happens when we start the clock will have t = 0. Any event that happens after that will

have a positive time, t > 0. Earlier events will have negative time, t < 0.

1There was reference to measuring the distance between two points [how many meters did it travel],
or the time interval between two events.
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Position: See Figure [1.5]. We have two choices for the ruler. First, we can place the

zero (origin). Second, we can align it in one of the two directions along the line defining

the motion.

If the object is at our chosen origin, we say that x = 0.

The rest of the ruler will then lie along the positive x-axis. This side of the origin will

correspond to positive, or increasing, values of x. If the object is on the positive x-axis,

it will have a positive value of x, i.e., x > 0.

On the other side of the origin, the values of x will be negative. Fifty centimeters away

from the origin, on the negative x-axis, it will be x = −50 cm.

So, the sign of x will depend on which side of the origin it is, and which way the axis

points. We can now be in a position to say “up is positive”, or “down is positive”,

depending on how we choose to position the ruler.

NOTE 1: The coordinate axis is labeled “x-axis”, or the abbreviation “x”.

NOTE 2: Only one arrowhead is drawn on the axis, on the positive x side.

NOTE 3: The origin must be clearly identified with a tick mark and a “0”.

Velocity: For motion along a line, we have three things that are very often confused,

• velocity, ~v (a vector)

• speed, magnitude of the velocity, v = |~v|

• x-component of the velocity, vx

The velocity is a vector, and strictly speaking, it is meaningless to say that it is positive

or negative. It is represented by an arrow that points in a given direction. The arrow

doesn’t have a plus or minus sign.

The speed is the magnitude of the velocity, and it can never be negative. It can only be

zero (if the object isn’t moving), or positive. It is the answer to the question, “how many

meters per second is the object moving”. The object can never move a negative number

of meters.

Both the velocity and speed are defined without reference to coordinate systems.

The x-component of the velocity is the projection of the velocity onto the x-axis. For

this, there must be a coordinate system, with an x-axis.
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The x-component of the velocity is defined to be positive if the velocity (vector) points

in the same direction as the positive x-axis.

The x-component of the velocity is defined to be negative if the velocity (vector) points

in the opposite direction as the positive x-axis.

Otherwise, the x-component of the velocity, vx, is very similar to the speed v. It is a

measure of how fast the object is moving, in meters per second. The difference is that it

takes into account the object’s direction of motion by way of a sign. This is one reason

why it is confusing.

Another reason for the confusion is that many books and teachers refer to the sign of

the velocity: “Is the velocity positive or negative?” when they really mean “Is the x-

component of the velocity positive or negative.”

Acceleration: Similar to velocity, there is some confusion. However, most confusion

centers on the question, “Is g = 9.8 m/s2, or is g = −9.8 m/s2?” But, the confusion not

only relates to gravity.

For our problem, we have three things:

• acceleration, ~a (a vector)

• magnitude of the acceleration, a = |~a|

• x-component of the acceleration, ax

Note that we don’t have a simple word analogous to “speed”, for the magnitude of the

acceleration.

Almost the same words apply for acceleration as they did for velocity.

The acceleration is a vector, represented by an arrow, and without a sign.

The magnitude of the acceleration is never negative.

Both of those are defined without a coordinate system.

The x-component of the acceleration is the projection of the acceleration onto the

x-axis.

The x-component of the acceleration is defined to be positive if the acceleration (vector)

points in the same direction as the positive x-axis.
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Figure 1.6: You are given six

vectors (acceleration or velocity) and

a coordinate axis. Decide if the sign

of the x-component of each of these

vectors is positive or negative or

zero.

ax = − 0 +

bx = − 0 +

cx = − 0 +

dx = − 0 +

ex = − 0 +

fx = − 0 +

The x-component of the acceleration is de-

fined to be negative if the acceleration (vec-

tor) points in the opposite direction as the

positive x-axis.

To resolve the issue with the sign of g, we

will use g as the magnitude of the acceleration

due to gravity (which is a downward pointing

vector). g is never negative.

If a ball is thrown in any direction, while

it is moving through the air2, it will have a

downward acceleration ~a whose magnitude is

a = g = 9.8 m/s2.

If we introduce a coordinate system, pointing

upward, then ax = −g = −9.8 m/s2. How-

ever, if it points downward, then

ax = +g = +9.8 m/s2.

2... near the surface of the earth, and uninfluenced by anything except gravity of the Earth...



Rulers and Clocks: Coordinate Systems 15

Table 1.3: Signs of Kinematic Quantities.

(a) A partial motion diagram
that represents the motion of
a car is shown below.
Determine the sign (−0+) of
the position, velocity, and
acceleration of the car at the
position of the open circle.

Position: − 0 +
Explain:

Velocity: − 0 +
Explain:

Acceleration: − 0 +
Explain:

(b) A partial motion
diagram that represents the
motion of a ball is shown
below. Determine the sign
(−0+) of the position,
velocity, and acceleration of
the ball at the positions of
each open circle. Determine
the signs of the displacement
and change in velocity as the
ball moves from position two
to position six.

Position 2: − 0 +

Position 6: − 0 +

Velocity 2: − 0 +

Velocity 6: − 0 +

Acceleration 2: − 0 +

Acceleration 6: − 0 +

Displacement from two to six
(2→6): − 0 +

Velocity change from two to
six (2→6): − 0 +

(c) A partial motion diagram
that represents the motion of
a ball is shown below.
Determine the sign (−0+) of
the position, velocity, and
acceleration of the ball at the
positions of each open circle.
Determine the signs of the
displacement and change in
velocity as the ball moves
from position four to
position six.

Position 4: − 0 +

Position 6: − 0 +

Velocity 4: − 0 +

Velocity 6: − 0 +

Acceleration 4: − 0 +

Acceleration 6: − 0 +

Displacement from four to
six (4→6): − 0 +

Velocity change from four to

six (4→6): − 0 +
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1.4 Constructing the Pictorial Representation

Most students that have trouble with physics say that they understand the material, but

do not know how to get started on a problem. Constructing a pictorial representation of

the problem is the best way to start such a problem.

Figure 1.7: A person on top of a tall building

throws a ball straight up as shown. The ball

leaves his hand 90 m above the ground with a

speed of 3.0 m/s2.

To construct this representation, pic-

ture yourself in the situation described

in the problem. Try to recreate the se-

quence of events that occurs, and make

a sketch that indicates the major steps

in the process. In kinematics, the prob-

lem is usually divided into parts sepa-

rated by instants at which the acceler-

ation changes.

See the figure for an example with only

one interval: Just after ball leaves hand

to just before ball hits ground.

Each part of the problem involves a

description of the motion while the ac-

celeration is approximately constant.

The next part of the problem starts

when the acceleration has changed be-

cause forces acting on the object have changed.

Some problems involve two objects that move either together or move independently.

Just as characteristics of two people are describe differently, the characteristics of these

objects must be described separately. Different symbols are used to indicate the position,

velocity, acceleration, mass and other properties of each object.

The pictorial representation clearly identifies, in symbolic form, the times, position, and

velocities of each object at events where changes in force or acceleration occur. The

acceleration during each time interval (between successive events), as well as other known

quantities, should also be represented symbolically in the pictorial representation. A

separate set of kinematic quantities is needed for each object involved in the problem.
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Pictorial Representation Checklist

• Sketch the system. Draw the objects at several important locations, and a few

in-between. Qualitatively indicate any motion. Indicate where on each object you

will measure location.

• Identify in your sketch, the important events. These are events between which the

acceleration is constant. There may be other types of events, for example, when a

ball reaches it’s highest point, or where the cars pass each other.

• Draw qualitative motion diagrams for your system. Include a series of dots, veloc-

ity arrows connecting these dots, and appropriate acceleration arrows. Label the

arrows.

• Choose a coordinate axis if one is not given. It should have a well-defined origin

(where x = 0), and a positive direction. Draw the coordinate axis.

• Decide on when the clocks will start, if not specified in the problem. Perhaps you

get to choose t = 0 for when the first event (labeled “Event (0)”) starts.

• For each important event, name and tabulate the time, position, and velocity.

Between the important events, name and tabulate the acceleration. Use the values

(numbers and units) from the problem statement and from choices you made, such

as placing rulers and starting clocks.

• Indicate any relationships between the kinematic quantities, if any. For example, if

a car (using time t) and a truck (using time T ) are passing each other, then t1 = T1

might be the time when they pass each other.

• Indicate any unknown kinematic quantities with an empty box. Relate each empty

box to a [possible] question in the original problem statement. If you know the

(non-zero) sign (+/−) of a kinematic quantity, identify that outside of your empty

box.
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Pictorial Representation – 1

A driver in a car, traveling at a constant 16 m/s (35 MPH)

on a through street suddenly sees a truck in front that

has entered from a side street and that now blocks the

car’s path. What is the shortest stopping distance for

the car assuming the reaction time of the driver is 0.75

seconds. The car’s maximum acceleration is 6.0 m/s2.

(a) Construct a pictorial model for the problem, but do not solve it.

(b) For each kinematic unknown, identify the question, or write a question.
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Pictorial Representation – 2

A woman runs at a constant speed of

5.0 m/s toward a waiting bus. When

she is 8.0 m behind the open door of

the bus, it starts to move forward at

increasing speed, with an acceleration of 1.0 m/s2. What time interval is needed for the

woman to reach the open door?

(a) Construct a pictorial model for the problem, but do not solve it.

(b) For each kinematic unknown, identify the question, or write a question.
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Pictorial Representation – 3

A car, initially at rest, accelerates to-

ward the east at 3.0 m/s2. At the same

time that the car starts, a truck 500 m

to the east of the car and moving at 32 m/s toward the west starts to move slower, losing

speed at a rate of 2.0m/s2. At what position, and at what time, will the car and truck

pass each other?

(a) Construct a pictorial model for the problem, but do not solve it.

(b) For each kinematic unknown, identify the question, or write a question.
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Pictorial Representation – 4

An apple falls from a tree from a distance of 2.0 m above

the top of the grass below. While falling, it has a down-

ward acceleration of 9.8 m/s2. As the apple sinks into the

grass, its speed decreases until it stops 0.050 m (5.0 cm)

down into the grass, as shown. Assume the apple has

a constant acceleration while it slows to a halt in the

grass.

(a) Construct a pictorial model for the problem, but

do not solve it.

(b) For each kinematic unknown, write a question.
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Pictorial Representation – 5

A car, initially at rest, accelerates toward the east at 3.0 m/s2. At the same time that the

car starts, a truck, 500 m east of the car, and moving at 32 m/s toward the west, starts to

move slower, losing speed at a rate of 2.0 m/s2. At what position will the car and truck

pass each other? (Make the two motion diagrams.)

For this problem, several different coordinate axes are provided. For each, tabulate the

known and unknown information. Suggestion: Use t, x, v, and a for the car; and T , X,

V , and A for the truck.
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Pictorial Representation – 6

A car, initially at rest, accelerates toward the west at 2.0 m/s2. At the same time that

the car starts, a truck, 1000 m west of the car, and moving at 16 m/s toward the east,

starts to move slower, losing speed at a rate of 1.0 m/s2. At what position will the car

and truck pass each other? (Make the two motion diagrams.)

For this problem, several different coordinate axes are provided. For each, tabulate the

known and unknown information. Suggestion: Use t, x, v, and a for the car; and T , X,

V , and A for the truck.
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Pictorial Representation – 7

A car, initially moving east at 12 m/s, accelerates toward the east at 1.0 m/s2. At the

same initial time, a truck 1000 m east of the car, and moving at 18 m/s toward the west,

starts to move slower, losing speed at a rate of 2.0 m/s2. At what position will the car

and truck pass each other? (Make the two motion diagrams.)

For this problem, several different coordinate axes are provided. For each, tabulate the

known and unknown information. Suggestion: Use t, x, v; and a for the car, and T , X,

V , and A for the truck.
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Multiple Representation Problem Solving – 1 (Pole Vaulter)

A pole vaulter, just before touching the cushion on which

he lands after a jump, is falling downward at a speed of

10 m/s. The vaulter sinks about 0.20 m into the cushion

before stopping. Estimate the average acceleration of

the vaulter while stopping.

Pictorial Representation:
Construct a pictorial
representation of the situation
described in the problem.
Include a coordinate axis, a
sketch of the situation just
before the vaulter touches the
cushion and a sketch of the
situation at the instant the
vaulter stops; symbols that
represent the of kinematic
quantities, and their values, or
empty boxes if unknown.

Physical Representation:
In your diagram above, construct a
motion diagram for the vaulter
while stopping as he sinks into the
cushion. Check the signs of the
known quantities in the sketches
above by comparing them to the
arrows in the motion diagrams.

Math Representation:
Chose one or more of the kinematic
equations that relate the variables
involved in the problem.

Solution:
Rearrange the equations so that the
unknowns are alone on one side,
and the known quantities are on the
other side. Substitute the known
information to determine the
answer to the problem.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 2 (Ball Bounce)

Just before a ball hits the ceiling of a room, it is

moving up with a speed of 6.0 m/s. After a time

interval of 0.10 s, the ball leaves the surface of

the ceiling and is moving down at a speed of

5.0 m/s. Determine the average acceleration of

the ball during this time interval while in contact with the ceiling.

Pictorial Representation:
Construct a pictorial
representation of the situation
described in the problem.
Include: a coordinate axis (for
consistency, have the axis
pointing up), a sketch of the
situation just before the ball
hits the ceiling and a sketch of
the situation just after the ball
leaves the ceiling, symbols that
represent the known values of
kinematic quantities in these
sketches (be careful of signs),
and a symbol representing the
unknown that you wish to
determine.

Physical Representation:
In your diagram above, construct a
motion diagram for the ball.
Represent the initial and final
velocities with arrows. Graphically
subtract these velocities to
determine the direction of the
acceleration. Check the signs of the
known kinematic quantities in the
sketches above against the
directions of the arrows.

Math Representation:
Chose one or more of the kinematic
equations that relate the variables
involved in the problem.

Solution:
Rearrange the equations so that the
unknowns are alone on one side,
and the known quantities are on the
other side. Substitute the known
information to determine the
answer to the problem.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 3 (Car on Hill)

The velocity of a car decreases as it travels down a hill

that points down and to the left. Initially, it travels at a

speed of 9.0 m/s. A little later, it is 20 m down the hill

moving at 4.0 m/s.

Identify the unknowns and write questions for each of them. Here is one: What is the

acceleration (both magnitude and direction) of the car?

Pictorial Representation:
Construct a pictorial
representation of the situation
described in the problem.
Include: a coordinate axis (use
one that is parallel to the
surface of the hill), a sketch
that shows the car at the
initial and final situations
described in the problem,
symbols that represent the
known values of kinematic
quantities in these sketches (be
careful of signs), and a symbol
representing the unknown that
you wish to determine.

Physical Representation:
Construct a motion diagram for the
car during this time interval.
Represent the initial and final
velocities with arrows. Use the
directions of the arrows in the
motion diagram to Check the signs
of the known kinematic quantities
in your pictorial representation.

Math Representation:
Chose one or more of the kinematic
equations that relate the variables
involved in the problem.

Solution:
Rearrange the equations so that the
unknowns are alone on one side,
and the known quantities are on the
other side. Substitute the known
information to determine the
answer to the problem.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 4 (Rocket Sled)

Figure 1.8: Dr. Stapp, an American Air Force
flight surgeon who also advocated mandatory
seat-belts in cars, which became law in 1966.

A rocket sled used to test automobile

restraining devices (seat belts and air

bags) accelerates from rest at 8.0 m/s2

for a distance of 16 m. In order to sim-

ulate an emergency stop, the rocket

sled is then decelerated at 64 m/s2.

Identify the unknowns and write ques-

tions for each of them. Here is one: What is the time interval needed to decelerate the

sled to a stop?

Pictorial Representation:
Construct a pictorial
representation of the situation
described in the problem.
Include: a coordinate axis, a
sketch that shows the sled at
the initial and final situations
described in the problem,
symbols that represent the
known values of kinematic
quantities in these sketches (be
careful of signs), and symbols
representing the unknowns
that you wish to determine.

Physical Representation:
Construct a separate motion
diagram for each part of the
problem. Use the directions of the
arrows in the motion diagrams to
check the signs of the quantities in
the pictorial representation.

Math Representation:
Chose one or more of the kinematic
equations that relate the variables
involved in the problem. You will
have two sets of equations, one for
each interval.

Solution:
Rearrange the equations so that the
unknowns are alone on one side,
and the known quantities are on the
other side. Substitute the known
information to determine the
answer to the problem.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 5 (Car vs Truck)

The driver of a car traveling

at 16 m/s sees a truck 20 m

ahead coming straight toward

her with a constant speed of 12 m/s. Without any delay (assume human reaction time

is zero), she immediately begins to decelerate at 8.0 m/s2. The truck driver is talking on

his cell phone and is unaware of the impending collision, so he doesn’t slow down.

Identify the unknowns and write questions for each of them. Here is one: If they don’t

swerve, when will they collide?

Pictorial Representation:
Construct a pictorial
representation of the initial
situation (when the truck is
first seen) and the final
situation (when at same
position). Include: a sketch
that shows the car and truck
at the initial and final
situations, symbols that
represent the known values of
kinematic quantities in these
sketches (be careful of signs),
and symbols representing the
unknowns that you wish to
determine.

Physical Representation:
Construct a separate motion
diagram for the car and the truck.
Use the directions of the arrows in
the motion diagrams to check the
signs of the quantities in the
pictorial representation.

Math Representation:
Write an equation that could be
used to determine the position of
the car at any time after the initial
time.
Write and equation that could be
used to determine the position of
the truck at any time after the
initial time.

Solution:
The car and truck, if continuing to
move straight toward each other,
will meet (have the same x value).
Use the equations above to
determine when that happens.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 6 (Thrown Ball)

A ball is thrown straight down from a ledge to a person 20 m below the ball’s starting

position. The ball’s initial downward speed is 5.0 m/s. Assume the acceleration of gravity

is 10 m/s2, and ignore effects due to the air.

Identify the unknowns and write questions for each of them. Here is one: What time

interval must the person below have to react in preparation for the ball’s arrival?

Pictorial Representation:
Construct a pictorial
representation of the situation
described in the problem.
Include: a coordinate axis, a
sketch that shows the ball at
the initial and final situations,
symbols that represent the
known values of kinematic
quantities in these sketches (be
careful of signs), and symbols
representing the unknowns
that you wish to determine.

Physical Representation:
Construct a motion diagram for the
ball. Use the directions of the
arrows in the motion diagrams to
check the signs of the quantities in
the pictorial representation.

Math Representation:
Select an equation that could be
used to determine the unknowns.

Solution:
Solve the equation for the
unknowns. Recall that the
quadratic at2 + bt + c = 0 has the
two solutions

t± =
−b±

√
b2 − 4ac

2a

Interpret the “negative” time.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Multiple Representation Problem Solving – 7 (Two Stones)

A person standing on a cliff uses a sling to shoot a stone vertically

upward with an initial speed of 30 m/s. Simultaneously, a person

on a ledge 15 m below shoots a second stone vertically upward. The

situation is such that the second stone is shot with such a speed that

it hits the first stone at the apex of the first stone’s flight. Assume

the acceleration of gravity is 10 m/s2, and ignore effects due to the

air.

Identify the unknowns and write questions for each of them. Here is

one: How fast must the second stone be shot?

Pictorial Representation:
Construct a pictorial
representation of the initial
and final situations for each
stone. The final situation is
when the stones are
side-by-side at the top (of the
first stone’s flight). Include:a
coordinate system, a sketch
that shows both of the stones
at the initial and final
situations, symbols that
represent the known values of
kinematic quantities in these
sketches (be careful of signs),
and symbols representing the
unknowns that you wish to
determine.

Physical Representation:
Construct a motion diagram for
each stone. Use the directions of
the arrows in the motion diagrams
to check the signs of the quantities
in the pictorial representation.

Math Representation:
Write equations that could be used
to determine the position and
velocity of the first stone at any
time after the initial time.
Write equations that could be used
to determine the position and
velocity of the second stone at any
time after the initial time.

Solution:
Solve the equations for the
unknowns. You may need to
algebraically combine several
equations.

Evaluation: Check your answer for consistency. Do the velocity and acceleration signs, your chosen
axis, and the motion diagrams all agree?
Is the unit of the answer correct? • Is the magnitude reasonable? • Did you answer the questions?
Go back and fill in the empty boxes with the values you figured out.
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Changing Kinematic Representations – 1

(a) An object moves along a horizontal
surface. The application of two kinematic
equations to the motion is shown below.
Construct a motion diagram representing
the motion and then invent some real
process that might be represented by the
equations and by the motion diagram.

x = 0 + (12 m/s)(2.0 s) +
1

2
a (2.0 s)2

0 = (12 m/s) + a (2.0 s)

(b) An object moves vertically. The
application of two kinematic equations to
that motion is shown below. Construct a
motion diagram representing the motion and
then invent some real process that might be
represented by the equations and by the
motion diagrams.

v21 − 0 = 2 (−10 m/s2) [(0)− (5.0 m)]

0− v21 = 2a12 [(−0.020 m)− (0)]

Solve the equations for the unknowns. Solve the equations for the unknowns.

Draw a motion diagram that is consistent
with the kinematic quantities and with the
motion described by the equations. The
object is moving horizontally.

Draw a motion
diagram that is
consistent with the
kinematic quantities
and with the motion
described by the
equations. The object
is moving vertically.
(You will need two
motion diagrams here.)

Construct a pictorial representation of some
process that is consistent with the motion
diagram and the equations above. (There
are many possibilities.)

Construct a pictorial
representation of some
process that is
consistent with the
motion diagram and
the equations above.
(There are many
possibilities.)
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Changing Kinematic Representations – 2

(a) An object moves along a horizontal
surface. The application of three kinematic
equations to the motion is shown below.
Construct a motion diagram representing
the motion and then invent some real
process that might be represented by the
equations and by the motion diagram.

9.0 m− 0 = 0 +
1

2
(2.0 m/s2) t21

v1 = (2.0 m/s2) t1

36 m− 9.0 m = v1 (t2 − t1)

(b) An object moves on an incline. The
application of two kinematic equations to
that motion is shown below. Construct a
motion diagram representing the motion and
then invent some real process that might be
represented by the equations and by the
motion diagrams.

(12 m/s)2 − (24 m/s)2 = 2 (−8.0 m/s2) (x− 0)

Solve the equations for the unknowns. Solve the equation for the unknown.

Draw a motion diagram that is consistent
with the kinematic quantities and with the
motion described by the equations. The
object is moving horizontally. [You need 2
diagrams.]

Draw a motion diagram that is consistent

with the kinematic quantities and with the

motion described by the equations. The ob-

ject is moves along an incline plane (斜面).

Construct a pictorial representation of some
process that is consistent with the motion
diagram and the equations above. (There
are many possibilities.)

Construct a pictorial representation of some

process that is consistent with the motion di-

agram and the equations above. (There are

many possibilities.)
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1.5 Kinematics of Projectile Motion

EXAMPLE: Construct a motion diagram

for a projectile that initially moves in a di-

agonal direction (斜线) above the horizon-

tal – like a baseball (棒球) after leaving a

bat (棒球棒) or a football (美国式足球) after leaving the foot of the punter (踢悬空求

的队员). Ignore effects due to the air.

To construct the motion diagram, combine two step-by-step motion diagrams, one for the

horizontal motion and one for the vertical motion. As we construct the motion diagrams,

assume the time between dots is the same for both motions.

Construct a horizontal motion diagram for an object X that moves at a constant speed

in the horizontal direction from left to right. Its (X ’s) horizontal speed is the horizontal

component of the ball’s initial velocity. Include 7 dots and 6 velocity arrows. Label the

velocity vx. Don’t forget “(ax = 0)”.

Construct a vertical motion diagram for an object Y with an

initial upward velocity. Its (Y ’s) initial vertical speed is the

vertical component of the ball’s initial velocity. This object

experiences a constant downward acceleration. Draw the up

dots and arrows slightly to the left of the down dots and ar-

rows, and put one dot at the top center. Make it symmetrical

with three up velocity arrows, and three down velocity arrows.

Label the velocity vy. Don’t forget the ay arrow.

NOTE: The 2-D problem of one projectile is similar to the 1-D (straight-line) motion

of two vehicles, one moving at a constant speed, and the other moving with a constant

acceleration. The motion diagrams above should be very familiar.

In the following, as we combine them, think of the two motion diagrams above as repre-

senting the motions of shadows (cast a shadow:投下影子):

X is the ball’s shadow on the floor cast from a light source far above the ball, and

Y is the ball’s shadow on the wall cast from a light source far to the right of the ball.
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Combine the two motion diagrams into a single two-dimensional (2-D) diagram. Number

the dots in all three diagrams from 1 to 7. To make the correspondence, the middle dot (4)

of X will be when the ball is at the highest point, dot (4) of Y . Place the horizontal

motion diagram along the x-axis, and the vertical motion diagram along the y-axis. Find

out where the ball’s “dots” would be in the xy-plane. The ball’s velocity arrows are made

by connecting the 7 dots in the plane. Don’t forget the a arrow: The acceleration of the

ball is everywhere downward (combine ax and ay : ~a = ax̂i + ay ĵ)

A look ahead: According to Newton’s laws, the direction of the ball’s acceleration will be

in the direction of the total force acting on the ball. Since the acceleration points straight

down, which way will the total force point? What is that force called?

What physical thing causes that force?

If we ignore effects due to the air, a projectile moves at a constant speed in the horizontal

direction, while simultaneously (at the same time,同时的) moving in the vertical direction with

a downward pointing acceleration.

People before Newton thought (and many students today think) that a force must push the

projectile in the direction of motion (to keep it moving through the air). HOWEVER, there is

no other object that touches the projectile to push in that direction.



36 Kinematics

Projectile Motion – 1

Use the procedures described above to construct motion diagrams for these special situ-

ations. Assume the initial speed is v = 50 m/s . Ignore effects due to the air. Calculate

the components of the initial velocity, vx0 and vy0 as indicated. Assume x is to the right

and y is upward.

(a) a projectile that initially moves in the hor-

izontal direction to the right

(b) a projectile that initially moves in a direc-

tion to the right but 37◦ below the horizontal

vx0= vy0= vx0= vy0=

(c) a projectile that initially moves in a direc-

tion to the right but 37◦ above the horizontal

(d) a projectile that initially moves in a direc-

tion to the right but 57◦ above the horizontal

vx0= vy0= vx0= vy0=

(e) a projectile that initially moves in a direc-

tion to the left but 37◦ below the horizontal

(f) a projectile that initially moves in a direc-

tion to the left but 57◦ below the horizontal

vx0= vy0= vx0= vy0=

In all of the above situations, what is the direction of the acceleration?
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Proton as a Projectile – 2

A proton (质子), with

a small positive elec-

tric charge, initially

moves toward the right,

as shown. It moves

into an area contain-

ing an arrangement

of (electrically charged) plates connected to a battery.

Region A-B: It first passes into a region where it speeds up between charged plates A

and B. Here the acceleration is constant and toward the right.

Region C-D: Then it passes into a region between plates C and D. Here the acceleration

is constant and straight down.

In the regions outside of the plates, it moves with a constant velocity.

(a) Construct a motion diagram for the proton from its initial position to just before

region C-D.

(b) Construct a motion diagram for the proton from the time it enters region C-D until

it exits to the right.

In the top figure, lightly sketch the general path of the proton as it passes through the system.
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1.5.1 Projectile Motion and Velocity Change

Remember This: When something is dropped, its downward acceleration is 10 m/s2.

This means that each second it falls, we must add 10 m/s to its speed. Immediately after

releasing, its speed is zero. After one second, it is 10 m/s. After two seconds, it is 20 m/s.

After three seconds, it is 30 m/s. ... and so on. (Upward motion is symmetrical.)

(a) If a stone is dropped, and falls for 3.6 s before it hits the ground, how fast is it

moving just before it hits the ground? Final speed =

(b) If we throw a stone straight up, and it takes two seconds for it to return, how fast

was it thrown? Initial upward speed =

The initial velocity of several projectiles are listed below. For each case, determine the

initial x (→) and y (↑) velocity components, and the velocity components two seconds

later. Assume g = 10 m/s2 and ignore effects due to the air. The arrow gives the general

direction of the initial velocity. [See page 36.]

vx(0 s) vx(2 s) vy(0 s) vy(2 s)

Initial Velocity ( m/s) ( m/s) ( m/s) ( m/s)

(a) →, 50 m/s horizontally

(b) ↘, 50 m/s, 37◦ below the horizontal

(c) ↗, 50 m/s, 37◦ above horizontal

(d) ↗, 50 m/s, 53◦ above horizontal

(e) ↙, 50 m/s, 53◦ below horizontal

(f) ↙, 50 m/s, 53◦ below horizontal

Extra: When does the projectile in (c) reach its highest point?

What is the velocity of the projectile at that point?
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Projectile Motion Question – 1

A ball is projected from the origin with ini-

tial velocity −→v0 as shown at the right. The

initial speed of the ball is 50 m/s. Assume

that g = 10 m/s2 and ignore effects due to

the air.

Point A is at the highest point. Point B is

where it returns to the ground level. [No calculator needed.]

(a) Determine the x component of the initial velocity. v0x=

(b) Determine the y component of the initial velocity. v0y=

(c) Determine the x component of the acceleration. ax=

(d) Determine the y component of the acceleration. ay=

(e) Complete the table below indicating the position and velocity at one-second time

intervals beginning at t = 0 when the ball leaves the origin.

t x(t) vx(t) y(t) vy(t)

( s) ( m) ( m/s) ( m) ( m/s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

(f) Determine the ball’s velocity at position A. ~v(at A)=

(g) Determine the location of position B. (x, y) at B


